时 间:2022年10月31日 13:30-14:30
地 点:腾讯会议ID:599-643-036
报告人:周岭 教授
主持人:唐炎林 研究员
摘 要:
The theory of statistical learning and inference for large-scale data analysis has recently attracted considerable interest. The central analytic task in the development of statistical learning and inference pertains to the method of integrating results yielded from distributed/streaming data batches. This talk introduced a communication efficient method without pooling individual datasets for unbalanced datasets, and an incremental learning algorithm for streaming datasets with correlated outcomes.
报告人简介:
周岭,2004-2010年四川大学数学学院本科和硕士,2014年西南财经大学博士,2018年美国密西根大学生物统计系博士后,2017年钟家庆数学奖获得者,周岭与合作者在数据集成、选择后推断、亚组分析、非参数理论与方法、因果推断等领域取得了一系列研究成果,在Journal of the American Statistical Association (JASA), Journal of Economics (JoE), Journal of Machine Learning Research(JMLR), Annal of Applied Statistics(AOAS), Biometrics等国际统计学、计量经济学、计算机领域期刊上发表论文20余篇。